Minimal pseudocompact group topologies on free abelian groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Pseudocompact Group Topologies on Free Abelian Groups

A Hausdorff topological group G is minimal if every continuous isomorphism f : G → H between G and a Hausdorff topological group H is open. Significantly strengthening a 1981 result of Stoyanov we prove the following theorem: For every infinite minimal group G there exists a sequence {σn : n ∈ N} of cardinals such that w(G) = sup{σn : n ∈ N} and sup{2 σn : n ∈ N} ≤ |G| ≤ 2, where w(G) is the we...

متن کامل

Imposing pseudocompact group topologies on Abelian groups

The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, m(α) ≤ 2. We show: Theorem 3.3. Among groups of cardinality γ, the group ⊕γQ serves as a “test space” for the availability of a pseudocompact group topology in this sense: If m(α) ≤ γ ≤ 2 then ⊕γQ admits a (necessarily connect...

متن کامل

Reflexive Group Topologies on Abelian Groups

It is proved that any infinite Abelian group of infinite exponent admits a non-discrete reflexive group topology. Introduction For a topological group G, the group G of continuous homomorphisms (characters) into the torus T = {z ∈ C : |z| = 1} endowed with the compact-open topology is called the character group of G and G is named Pontryagin reflexive or reflexive if the canonical homomorphism ...

متن کامل

Non-Abelian Pseudocompact Groups

Here are three recently-established theorems from the literature. (A) (2006) Every non-metrizable compact abelian group K has 2|K|-many proper dense pseudocompact subgroups. (B) (2003) Every non-metrizable compact abelian group K admits 22 |K| -many strictly finer pseudocompact topological group refinements. (C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense pseudoco...

متن کامل

Extremal α-pseudocompact abelian groups

Let α be an infinite cardinal. Generalizing a recent result of Comfort and van Mill, we prove that every α-pseudocompact abelian group of weight > α has some proper dense α-pseudocompact subgroup and admits some strictly finer α-pseudocompact group topology. AMS classification numbers: Primary 22B05, 22C05, 40A05; Secondary 43A70, 54A20.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2009

ISSN: 0166-8641

DOI: 10.1016/j.topol.2009.03.028